SPECTRES DE VIBRATION DE COMPOSÉS ORGANIQUES DE LA COLONNE IVB II*. HEXAALKYLDIGERMOXANES, MONOALCOXYTRIALKYL-GERMANIUMS, DIALCOXYDIALKYLGERMANIUMS, GERMAOXACYCLOALCANES. COMPARAISON AVEC LEURS ISOLOGUES SILICIÉS ET STANNIQUES**

ANNETTE MARCHAND, MARIE-THÉRÈSE FOREL, MICHEL LEBEDEFF ET JACQUES VALADE

Laboratoire de Chimie des Composés Organiques du Silicium et de l'Étain et Laboratoire de Spectroscopie Infrarouge, associés au C.N.R.S., Faculté des Sciences de Bordeaux, 351 cours de la Libération, 33-Talence (France)

(Reçu le 23 juillet 1970)

SUMMARY

The infrared spectra of two hexaalkyldigermoxanes $R_3GeOGeR_3$, fifteen alkoxytrialkylgermaniums R_3GeOR' , twelve dialkoxydialkylgermaniums R_2Ge -(OR')₂ and four alkylgermaoxacycloalkanes, have been examined in the 3600–2700 cm⁻¹ and 1500–400 cm⁻¹ regions. Some Raman spectra were also examined in the 3000–200 cm⁻¹ region. Assignments are discussed for the characteristic stretching vibrations of GeC₃, GeC₂, GeOGe, GeOC and Ge(OC)₂ groups and for some vibrations of the methyl and butyl groups bound to germanium.

Tentative correlation between the studied derivatives and isologous silicon and tin compounds is reported.

RÉSUMÉ

Les spectres infrarouges de deux hexaalkyldigermoxanes $R_3GeOGeR_3$, quinze alcoxytrialkylgermaniums R_3GeOR' , douze dialcoxydialkylgermaniums $R_2Ge(OR')_2$ et quatre alkylgermaoxacycloalcanes ont été examinés de 3600–2700 cm⁻¹ et de 1500–400 cm⁻¹. Quelques spectres Raman ont été également examinés dans la région 3000–200 cm⁻¹. Les attributions des vibrations de valence caractéristiques des groupes GeC₃, GeC₂, GeOGe, GeOC et Ge(OC)₂ ainsi que celles de quelques vibrations des groupes méthyles et butyles liés au germanium sont discutées.

On a tenté d'établir une corrélation entre les composés germaniés et leurs isologues siliciés et stanniques.

^{*} Pour Part I voir réf. 51.

^{**} Ce mémoire constitue une partie de la thèse de Docteur-Ingénieur de M. Lebedeff (1969).

L'étude systématique de séries homologues de dérivés organométalliques nous a permis de comparer des composés organiques du germanium avec leurs isologues siliciés et stanniques¹⁻⁵.

Le présent travail complète les résultats publiés précédemment sur les fréquences caractéristiques des composés organogermaniés⁶: nous examinerons les spectres infrarouges et Raman de deux hexaalkyldigermoxanes, quinze alcoxy-trialkylgermaniums, douze dialcoxydialkylgermaniums et de quatre germaoxacyclo-alcanes.

La liste des dérivés alcoxylés R_3GeOR' et $R_2Ge(OR')_2$, désignés dans la suite de l'exposé par un numéro entre parenthèses, est donnée dans les Tableaux 1 et 2 où figurent également les hexaalkyldigermoxanes R_6Ge_2O (IV) et (VIII) et les dérivés dichlorés R_2GeCl_2 (III) et (VII). Nous avons étudié aussi les spectres de (CH₃)₄Ge (I) et $(n-C_4H_9)_4Ge$ (V) et ceux de $(CH_3)_3GeCl$ (II) et $(n-C_4H_9)_3GeCl$ (VI) qui nous étaient indispensables pour une analyse et une interprétation comparatives. En outre, les composés cycliques de formule

ont été numérotés respectivement (XXXVI) et (XXXVII)–(XXXIX) pour n=2, 3 et 4.

Les spectres infrarouges de tous ces dérivés ont été enregistrés entre $3600-2700 \text{ cm}^{-1}$ et $1500-400 \text{ cm}^{-1}$, en solution dans les solvants appropriés. Quelques spectres Raman ont été également examinés dans la région $3000-200 \text{ cm}^{-1}$. Nous indiquons en appendice les conditions expérimentales et la précision des mesures. Les fréquences des bandes observées sont rassemblées dans les Tableaux 3-7. Nous avons réuni sur les Figs. 1 et 2, à titre d'exemple, quelques courbes d'absorption $\varepsilon = f(v)$.

Nous envisagerons tout d'abord les vibrations des substituants méthyles et butyles liés au germanium, puis nous aborderons l'étude des fréquences de vibrations caractéristiques des digermoxanes, monoalcoxygermaniums, et dialcoxygermaniums. Nous considérerons également les problèmes de structure posés par les germaoxacycloalcanes.

Pour terminer, nous établirons une corrélation entre les composés germaniés étudiés et les dérivés siliciés et stanniques isologues.

I. ATTRIBUTION DES VIBRATIONS CARACTÉRISTIQUES DES GROUPES MÉTHYLES LIÉS AU GERMANIUM

Vibrations de valence des groupes CH_3

Les spectres des composés $(CH_3)_4$ Ge, $(CH_3)_3$ GeCl et $(CH_3)_2$ GeCl₂ présentent deux bandes fortes entre 3000 et 2900 cm⁻¹ qui peuvent être attribuées, en accord avec Van de Vondel⁷, aux vibrations de valence $v(CH_3)$ (Tableaux 3 et 5); elle n'apparaissent pas dans les spectres des dérivés butylés. On attribue les bandes de plus basse fréquence, se trouvant respectivement à 2904, 2906 et 2928 cm⁻¹ pour les dérivés (I), (II) et (III), à la vibration de valence symétrique $v_s(CH_3)_{Ge}$, puisque dans le cas de $(CH_3)_3$ GeGe $(CH_3)_3$ une raie Raman forte et polarisée a été observée⁸ à 2904 cm⁻¹. Par analogie, et en accord avec Markova⁹, les suites de fréquences à $2905 \pm 6 \text{ cm}^{-1}$ et $2920 \pm 5 \text{ cm}^{-1}$, dans la série des dérivés mono- et dialcoxylés étudiés, sont affectées à la vibration de valence $v_s(CH_3)_{Ge}$.

Les vibrations v_a et $v'_s(CH_3)_{Ge}$ sont attendues dans la même région. Or, on observe dans les spectres des composés (I) et (II), une seule absorption très intense, respectivement à 2970 et 2978 cm⁻¹, et dans les spectres des composés (IX)-(XVI) une bande large à 2970 ± 10 cm⁻¹: nous les attribuons à l'ensemble des vibrations (v_a et v'_s)(CH₃)_{Ge} sans qu'il soit possible de les distinguer. Dans les composés (XIII) et (XIV), cette absorption est intensifiée par les bandes propres aux substituants alcoxylés i-C₃H₇ et t-C₄H₉.

Dans le cas des dérivés dialcoxylés à la vibration $v_a(CH_3)_{Ge}$ correspond la suite des fréquences 2980±10 cm⁻¹.

Vibrations de déformation $\delta(CH_3)_{Ge}$

À la vibration de déformation symétrique d'un ou de plusieurs groupes méthyles liés à un atome métallique M, correspond toujours une très forte bande de fréquence variable avec la nature du métal. D'après les différents spectres enregistrés

Fig. 1. Courbes d'absorption $\varepsilon = f(v)$ de dérivés germaniés butylés.

et en accord avec d'autres auteurs^{10,11}, nous notons, dans le cas des dérivés monoalkylés et dialkylés, une très forte bande située respectivement à 1238 ± 4 cm⁻¹ et 1240 ± 4 cm⁻¹ et qui n'est pas observée dans les composés butylés. Enfin, puisque dans le cas de (CH₃)₃GeGe(CH₃)₃, on observe une raie Raman forte et polarisée à 1243 cm⁻¹, on peut attribuer, comme l'a fait Chumaevski¹², ces deux suites de fréquences à deux modes provenant des mouvements de déformation symétrique δ_{s} (CH₃)_{Ge}.

	Ξ
	È
	ပ္ပ
	Ū,
	2
	٨S,
	2
	R
	KN
	08
	7
	Ľ
	1
	X
	Ξ
	Ξ
	÷
	É
	4
	Ĩ
	X
	- 2
	1
	1
	E E
	20
	Ē
	-
	E
	Z
2	MV
EA	2
H	E
AI	Z
F	2

J. Organometal. Chem., 26 (1971) 69-100

BANDES RAN ENTRE 660 E	ian et IR pour t 550 cm ⁻¹ "	R LIS ALCOXYTRI	ALKYL- ET HEXA	ALKYLGERMANI	JMS, R ₃ GeOR	' ET R ₃ GeOGeR	£		
No.	R	R'	IR	Raman	IR .'	Raman	IR	Raman	IR
Composés k	L,GeOR'								
(XI)	, CH,	CH,	651 f		615 (c)	614 P	602 FF		567 f
S	ı	C,H,	653 m		614 (c)		609 F		571 f
(XI)		n-C ₃ H ₇	651 m	659 f	616 (c)	613 f	607 F		567 f
(IIX)		n-C ₈ H ₁ ,	653 m		615 (e)		607 F		568 f
(XIII)		i-C ₃ H,	653 F	656 f P	617 F	618 m	609 F	610 F	571 f
(XIV)		t-C ₄ H	648 (c)		611 F		604 F		569 f
(XV)		C,H,,	652 m		613 F		606 F		570 m
(XVI)		C,H,	653 mF		615 F				572 f
(IIVX)	n-C ₄ H,	ĊH,	655 m	652 (e)	636 (e)	632 m P	588 F	588 mF P	566 (c)
(XVIII)	•	C,H,	651 F		639 (c)		580 f		565 ľ
(XIX)		n-C ₈ H ₁ ,	653 F	650 (c)	634 (c)	627 F	582 ff		566 f
(XX)		i-C ₃ H,	649 F		634 (c)		583 fT		567 f
(IXXI)		t-C ₄ H ₉	654 F		636 (c)		600 m		563 ff
(IXXII)		C,H,	654 m		637 (c)		586 (c)		570 F
(IIIXX)		C,H,	651 m		632 (c)		598 (c)		567 f
Composés I	λ ₃ GeOGeR ₃								
(IV)	CH3		653 (e)				607 F	607 F	576 m
(VIII)	n-C₄H,		653 (c)	650 (c) P	635 (c)	633 P			565 m

571 F P

572 F P

571 F P

Raman

A. MARCHAND, M.-T. FOREL, M. LEBEDEFF, J. VALADE

565 F P

565 F P

579 F P 567 F P

" FF très fort; F fort; mF moyennement fort; m moyen; mf moyennement faible; f faible; ff très faible. (e)=épaule; P=polarisée; l=large.

40'	R	R'	IR	Raman	IR	Raman	IR	Raman	IR	Raman
Composés I	λ,Ge(OR'),									
XXIV)	ĊH,	CH ₁	660 (c)		632 mF		609 F		579 f (c)	
XXV)	:	C ₂ H ₅	668 F		638 F		604 (c)			
XXVI)		n-C ₃ H,	653 F	662 P	627 F	632 m	(o) (o)		588 (c)	587 F P
XXVII)		n-C ₈ H ₁ ,	660 mF	666 mF	628 F	631 F	(c) (c)		588 Î	590 P
XXVIII)		i-C ₃ H,	667 (c)		625 f		611 Î		587 fT	
XIX)		t-C ₄ H ₆	668 f		626 F		595 (c)			
(XX)	n-C ₄ H ₉	CH,	664 (c)		648 (c)		605 TF		573 IT	
		C_2H_5	654 m				603 f		572 IT	
XXXII)		n-C ₃ H ₇	651 F		637 F		588 f		569 f	
XXXIII)		n-C ₈ H ₁₇	655 F		634 (c)		604 m		577 f	
XXXIV)		i-C ₃ H,	660 F	662 m	639 (c)	637 P	602 mľ	598 f	579 f	580 P
XXXV)		۱-C4H	655 F		645 (c)		604 FF		564 f	
Composés	R1GeCl1									
(III	CH,				637 F				595 m	
(III V	n-C,H9		004 1		642 (c)				5791	

bandes raman et IR pour les dialcoxydialkylgermaniums $R_2Gc(OR')_2$ et les dichlorodialkylgermaniums R_2GcCl_2 entre 670 et 550 cm $^{-1}$ TABLEAU 2

$\Sigma = -CH_3$ (1)	(I) -C	-OGe(CH ₃) ₃ (IV)	-OCH ₃ (IX)	-OC ₂ H ₅ (X)	-0-n-C ₃ H ₇ (XI)	-0-n-C ₈ H ₁₇ (XII)	-0-i-C ₃ H ₇ (XIII)	-0-t-C ₄ H ₉ (XIV)	-0C ₆ H ₁₁ (XV)	-oc ₆ H ₅ (XVI)	Attributions
						2989 (c)			2981 m	3080 m 3034 m 3019 f	
2970 FF	2978 FF	2983 FF	2976 FF 2948 F	2972 FF	2965 FF	2964 FF 2929 FF	2960 FF	2965 FF	2970 m 2023 F	2980 F	(va et v's)(CH ₃) _{Ge}
2904 FF 2868 ff	2906 FF 2873 (c)	2914 FF 2869 ff 2822 æ	2911 FF 2876 (c)	2910 m 2855 mF	2906 FF 2855 mF	2899 (c) 2879 m 2879 m	2906 m 2862 m	2902 m 2863 mF	2899 (c)	2911 mF 2868 f	ν"(CH ₃)Gc
	(2) 1007	11 7707	2007	(2) +107		-1 1057	111 / 1 07		-1 6497	1505 F 1592 F 1581 m	
2799 ff	2791 f	2793 ff		2806 (c)	2805 (c)	2802 (c)	2794 (c)	2794 lT		1575 (c) 1522 m	
				2745 f			2762 ft			1517 m 1500 m	
										1492 FF 1488 FF 1470 m	
5			1467 ff	1477 ff	1466 ff	1466 m	1464 m	1464 f	1 464 (c)	1466 (c)	
1437 II 1433 ff		J 2271	1461 II 1446 f	በ እና ጠ	1458 11	1456 F 1424 F	1452 m	1452 f	1451 F	1451 f	
	1420 fî	- CCL 1	1422 IT	11 0711			1421 (c)		1 0441		
1300 5	1412 ff	1 400 E	1414 ff 1400 ff	1 405 E		1 202 1		1413 f			
J 0401	1400 (c)	1400 L	1408 L	1 CU41	1407 1-	1407 1	140/ mF	1407 m	1408 m	1410 F	(δ _a et δ'')(CH ₃)Ge
	1395 (c)		1396 (c)	1383 FF	1381 F	1378 m	1376 F	1387 m	1377 (c)		
							1363 m	1364 F	1363 m 1360	1364 f	0°(~113)C
						1342 ff	1345 f	1341 F	1346 f	1341 f	
		1330 f					1328 f		1331 ff 1253 (e)	1330 fT	
1234 FF	1240 FF	1236 FF	1238 FF	1237 FF	1235 FF	1237 FF	1237 FF	1243 (c) 1235 FF	1244 (c) 1236 FF	1242 FF	δ _ι (CH ₃) _G
			1111					1223 (e)		1231 (c)	
		1190 ff	1196 ff					1192 FF			
			1173 ff			1177 ff			J179.ff	1176 10	

fréquences et attributions des bandes des composés $({\rm CH}_3)_3{\rm Ge}\Sigma^a$

TABLEAU 3

.

			v(CO)										$\rho(CH_3)_{Ge}$	ρ(CH₃) _{Ge}		$\rho(CH_3)_{Ge}$						v,(GeC3)	v _s (GeOGe)
11041 1150ff			1256 FF	1068 m	1 6601	1 666			892 ff	880 f 858 m		830 (c)	821 F	794 f	768 m	753 m			687 F 653 mF	634 (c)	615 F	572 f 542 ff	506 IT
1148 ff	1130 f 1097 (c)	1082 (c)	1071 FF		1035 f	992 (c)	981 F	970 ff 960 ff		886 I	846 mf		825 F 820 FF	793 mF		7.45 mF	724 (c)	/U6 m 697 (c)	652 mF		613 F 606 F	570 m	
			972 FF		37001	10241			912 f				826 FF	794 F	781 F	758 mF			648 (e)		611 F 604 F	569 f 470 f	4621
1153 m	1123 FF		980 FF					948 ff			844 (c)	836 (c) 829 (c)	821 FF	794 mF		757 mF	724 {		653 mF		617 F 609 F	571 f	
1144 II	1120 f	1078 F	1070 FF	1054 F	1044 m	1 6701	J 966	968 f 961 f	J 006	859 ff			821 FF	794 F		753 mF	J 617		682 F 653 mF	k 1	615 (c) 607 F	568 f	
1141 ff	1102 f	1073 FF	1064 FF 987 FF		101101	1013 ff		966 F		888 f 869 f			821 F	793 F		755 mF 750 mF			687 f 651 mF		616(c) 607 F	567 f	
11 00 11 11 58 ff	1101 FF		1064 FF	1057 (c)					911 m	851 f			822 FF	794 F		758 F 751 m			653 mF		614 (c) 609 F	571 f	
			1061 FF		1042 f (c)	1 1701							822 FF	794 f		745 f (6)			651 f		615 (c) 602 FF	567 f	
1156 ff	1118 ff 1101 ff	1084 ff					988 m	966 (c)	928 f	859 F			823 FF	794 FF 794 FF		753 mF			653 f		607 F	576 (c) 566 m	467 f
													835 FF		769 (c)	761 mF			637 f (e)		621 FF 601 f	574 f	
													823 F							600 F			

^a Les fréquences attribuées à v(CO) sont en italiques.

$\sum_{v=-n-C_4H_9}$	(v]) (v]	-0Gc(n-C4H9) (VIII)	, -осн _э (хvii)	-0C2H5 (XVIII)	-O-n-C ₆ H ₁₇ (XIX)	-0-i-C ₃ H, (XX)	-0-1-C4H9 (XXI)	-OC ₆ H ₁₁ (XXII)	-0C ₆ H 5 (XXIII)	Attributions
2955 FF	2955 FF	2955 FF	2953 FF	2958 FF	2956 FF	2955 FF	2958 FF	2955 FF	2959 FF	$\begin{cases} (v_a \text{ et } v'_a)(CH_3)_c \\ v (CH_1)_c \text{ et } v (CH_1)_c \end{cases}$
2917 FF	2925 FF	2921 FF	2923 FF	2926 FF	2925 FF	2923 FF	2925 FF	2925 FF	2928 FF	$v_{s}(CH_{3})_{c}$ of $v_{s}(CH_{2})_{c}$
2895 (c)	2894 (c)	2896 (c)	2901 (c)	2900 (c)	2897 (c)	2897 (c)	2897 (c)	2900 (c)	2900 (e)	v,(CH ₂)G
2871 F	2871 F	2871 F	2872 F	2872 F	2871 F	2871 F	2871 F	2871 F	2874 F	28(CH ₂)c
2852 F	2857 F	2856 F	2855 F	2857 F	2855 F	2850 F	2854 F	2853 F	2858 F	28' (CH ₃)c
2810 (c)	2808 (c)	2805 (c)	2807 f	2805 (e) 2715 ff	2808 (c) 2724 f	2808 (c) 2713 ff	2808 (c) 2723 ff	2816 f (c) 2718 ff	2805 (c) 2718 ff	
							: i i	:	1594 F	
									1580 f 1576 f	
									1491 mF	
1466 F	1466 F	1465 F	1465 F	1465 F	1466 F	1466 F	1465 F	1465 F	1466 mF	δ _a (CH ₃)c
1402 1		1407 F	1 3641			1 407 1	1	1	1	
1456 F	1457 F	1454 F	1453 F	1456 F	1455 F	1452 F	1454 F	1459 F	1457 m	δ(CH ₂)c
		(a) UC41						m 1 (4)		
1446 m 1437 (a)	1447 m	1445 m	1443 m	1447 m	1448 m	1446 m 1427 (a)	1447 m	1447 m 1426 (o)	1449 m	δ _i (CH ₃)c
(a) (c) (c) (c)	1421 F	1421 f	1421 f	1420 (e)	1421 f	1427 (c) 1471 f	1420 f	(a) 0641 1420 f		
1417 m	1414 m	1412 f	1414 f	1414	1415 f	1414 f	14155	1415 f	1414 F	AICH.).
				1382 m	1388 (c)		1386 m			
1376 F	1378 F	1376 F	1376 F	1377 F	1377 F	1376 F 1363 m	1376 F	1377 F 1360 F	1378 mF	δ _s (CH ₃)c
			1361 (c)	1359 f		1361 m	1358 FF	1 1001		
1340 m] ²	1342 mF	1341 mF	1342 f	1342 m	1341 mF	1341 mF	1343 mF	1345 mF	1343 mF	v(Bu)
1294 m	1295 m	1299 m	1295 f	1295 f	1311 f	1295 f	1295 f	1295 m	1296 f	v(Bu)
1271 f	1280 f (c)	1268 f	1272 f	1270 f	1270 ff	1270 ff	1272 N		1280 m	v(Bu)
									1 224 F	Ve
							1233 m 1287 m		1231 m	
1196 mf	1194 f	1194 f	1196 f	1 195 f	1195 f	1 193 ff	1194 F	1196 m	1196 f	v(Bu)
1185 mf	1183 f	1 182 f	1182 m	1182 f	1185 f			1182 m	1184 f	v(Bu)
1171 m	1173 f	1170 m	1175 m	1172 f	1172 f	1167 m	1175 (c)	1172 m	1173 f	v(Bu)

fréquences et attributions des bandes des composés (n-C_4H_9)_3Gc Σ^4

TABLEAU 4

.

								_															(
		<i>μ</i> (CH ₃)c	v(CO) v(Bu)	ν(Bu) ρ(CH ₃)c	v(CC)	v(Bu)	v(Bu)	v _a (GeOGe	- -			v(Bu)	$\rho(CH_2)_C$	1 1 1	$\rho(CH_2)_{Ge}$						Vs(GC3)	v(Bu)	v"(Ge0Ge	
1151 f		1082 f 1069 f		1022 f 1000 f	964 f	885 m	878 m (c)	855 F	847 m (c)	827 f		763 m	755 mF	715 ff	687 F	672 f 663 f	651 mf	632 ff (c) 607 f	598 fT	574 ff	539 ff	461 ff		uées v(Bu).
1148 f 1131 m		1079 F (c)	1070 FF 1049 f 1035 f	1023 f 1000 f 982 m	963 f	885 m	870 m (c)		846 m		793 ff	772 ff	759 ff	722 (c)	689 m (c)	700 m	654 mf	637 (c)	586 f (c)	510 E	522 mf 522 mf 487 mf	465 m 451 m		vle sont india
		1081 m	971 FF 1049 f	1023 f 1000 f	962 F (e) 903 ff	887 m	872 m (c)				780 mF	772 f	747 f	713 m	690 mF		654 F	636 (e)	600 m (c)	1 L 7 2	1 000	460 ff		au groune hut
1173 F		1070 m	980 FF 1050 f	1023 f 1000 f	964 m	884 f		854 f (c)	841 m 836 f	816 fT		171 f	757 f	712 m (e)	688 F		649 FF	634 (e)	583 ff	567 6	548 (c)	465 f		tions propres
1110 (1080 F	1074.FF 1052 f	1026 f 1000 f	963 f 892 mf	882 m	877 m (c)	869 m	847 f	825 f (c)	785 ff	772 f	749 f	716 m	683 F		653 mF	634 (c)	582 ff	בעל נ	546 (c)	460 If		lant à des vibra
l 159 f (c)	1101 FF	1076 F	1064 FF	1026 m 1001 mf	964 mf 910 F	884 m 880 m	870 f (e)	857 f	846 fî		785 ff	773 f	751 f	713 m	687 F		651 F	637 (c)	580 f	565 6	1 -0	462 ff		lles correspone
		1079 F	1056 FF	1025 mf 1001 m	963 m	881 m	871 f (c)	851 ff				772 f	749 lî	711 m	687 F		655 m	636 (c)	588 F	(0) 22		464 II		italiques et ce
1 146 (c)		1079 F	1048 f	1023 f 1000 f	962 m	882 f		855 m 841 F			786 ff	773 f	750 m	712 m	687 mF	675 (c)	653 m			581 f (c) 566 f	549 (c)	462 f	400 ff	v(CO) sont en
		1083 F	1048 f	1027 f 1000 f	963 f	884 f	871 f (e)				785 fT	773 f	753 f	718 m	689 mF		655 (c)			588 ľ (c) 566 ľ		462 ff		es attribuées à
		1081 F	1051 f	1025 mf 1001 m	964 F	883 F	874 m (c)				792 ff	772 f	751 f	714 m	690 F	680 F (c)	644 m			574 [(c)		462 If		^a Les fréauenc

TABLEAU 5

fréquences et attributions des bandes des composés (CH3) $_2$ Ge Σ_2^{a}

$\Sigma = -Cl$ (III)	-OCH ₃ (XXIV)	$-OC_2H_5$ (XXV)	$-O-n-C_3H_7$ (XXVI)	-O-n-C ₈ H ₁₇ (XXVII)	−O-i-C ₃ H ₇ (XXVIII)	~O-t-C ₄ H ₉ (XXIX)	Attributions
2989 m	2988 m	2970 FF 2978 (e)	2970 F 2986 m (e)	2990 m (e)	2977 FF	2975 FF	v ₂ (CH ₃) _{Ge}
	2955 (e)		2942 т	2955 m	2942 f 2933 f		
2928 m	2926 FF	2922 m	2921 m	2923 FF	2925 f	2924 f	vs(CH3)Ge
	2902 (e)			2901 (e)	2902 f	2901 f	
	2890 (e)	2890 (e)	2880 m	2872 (e)	2872 f		
		2867 m	2862 m	2854 FF		2866 f	
	2820 FF	2836 (e) 2808 ff		2801 ff	2817 ff	2807 ff	
		1478 f					
		1472 f	1464 ſ	1467 m	1465 m	1451 m	
	1455 f	1450 (e)	1452 f	1457 mF	1452 m		
	1439 f	1439 f	1434 ff	1431 f	1440 ff	1439 m	
1405 FF	1402 f	1408 ff 1393 (e)	1409 ff	1408 ff 1389 f	1408 fT	1408 fT	
		1389 (e)	1388 m	1385 m		1388 (e)	. (
		1385 F	1385 m	1380 mF	1378 FF	1385 F	δ₅(CH₃)c
		1374 (e) 1360 (e)	1368 (e)		136/ FF	1363 (e) 1360 F	
					1349 1		
	1250()				1334 ft		
	1259 (e)			1010 5	1257 #	1243 (e)	S (OTT)
1250 FF	1241 mF	1243 m	1242 mF	1242 F	1244 m	1239 m	$\partial_{s}(CH_{3})_{Ge}$
			121211	12111		1230 m	
	1100 (-)					1190 (c)	
1160 ff	1189 (e)	1159 6	1150 €	11//1	1169 mE	1186 mP	
1100 11	1170 11	11361	11/56	1143 €	1103 IIIF	1140 £	
			11451	11451	1128 E	11401	
	1117 (e)			1119 f	1123 FF		
	1117 (0)	1098 FF	1099 mF	11121	111911		
1071 ff	1061 FF	1062 F (e)	1070 FF				
	1049 FF	1053 FF	1056 FF 984 FF	1065 F	972 FF	963 FF	v(CO)
	1037 (e)			1051 mF			
	1020 (e)		1024 m	1029 m	1027 f	1027 m	
				994 f	988 F	975 (e)	
				963 ſ	950 (e)		
		910 F	910 f			906 F	
	0565	870 /1)	889 m	901 f			
0.47 5	8361	870(1)	868 m	8//1		841 (e)	()
847 F	822 m	810 (e)	823 F	823 m	849 FF	827 (e)	$\rho(CH_3)_{G_c}$
825 FF	808 F	800 F	806 F	805 F	800 FF	806 F	$\rho(CH_3)_{Ge}$
			790 m	/85 (e)	784 (e)	795 F	
770	754	750 5	757	770 m 751	750 5	785 F	
770 III	/) + III	/301	/32 mr	751 m 710 f	/50 11		ρ(CH ₃) _{Ge}
			692 mF	697 f	670 FF		
					0/011		

$\sum_{\substack{\Sigma = -Cl \\ (III)}}$	-OCH ₃ (XXIV)	-OC ₂ H ₅ (XXV)	-O-n-C ₃ H ₇ (XXVI)	-O-n-C ₈ H ₁₇ (XXVII)	−O-i-C ₃ H ₇ (XXVIII)	−O-t-C₄H9 (XXIX)	Attributions
	660 (c)	668 F	653 F	660 mF	667 (e)	668 f 634 F	
637 F 619 f	632 mF	638 F	627 m	628 F	625 f	626 F	
	609 F	604 (e)	609 (e)	609 (e)	611 f	595 (e)	
595 m	579 f (e)		588 (e)	588 f	587 ff	549 ff	$v_s(\text{GeC}_2) + v_s(\text{GeC}_2)$
			516 ff		450 m	478 m 462 m	
			431 f		427 m		

TABLEAU 5 (suite)

" Les fréquences en italiques sont attribuées à v(CO).

L'absorption, située à 1405 cm⁻¹ dans $(CH_3)_2GeCl_2$ et $CH_3GeCl_3^{13.14}$ et 1406 cm⁻¹ dans $(CH_3)_3GeCl$ est attribuée à l'ensemble des deux vibrations de déformation $(\delta_a \text{ et } \delta'_s)(CH_3)_{Ge}$. La suite à 1405 ± 5 cm⁻¹, observée sur tous les spectres des dérivés méthylés oxygénés sous forme d'une bande forte et large correspond à ces mêmes vibrations.

Lorsque le radical du composé alcoxylé possède plus de deux atomes de carbone [dérivés (X)–(XIV) et (XXV)–(XXIX)], on note la présence vers 1380 cm⁻¹ d'une bande attribuée à la vibration de déformation δ_s (CH₃)_C².

Vibrations de balancement ou "rocking" des CH₃

Lors de l'étude des spectres des dérivés de la famille $(CH_3)_n GeCl_{n-4}$ différents auteurs attribuèrent aux vibrations de rocking des groupes CH₃, les absorptions situées à 825 cm⁻¹ pour n=4, 835 cm⁻¹ pour n=3 et 847, 825 et 770 cm⁻¹ pour $n=2^{7,10,13,14}$. Nous retrouvons dans les spectres des composés étudiés des suites de bandes respectivement à 824 ± 3 cm⁻¹, 800 ± 6 cm⁻¹ et 756 ± 6 cm⁻¹ que nous attribuerons à trois vibrations de rocking des groupes CH₃ liés au germanium $r(CH_3)_{Ge}$.

II. ATTRIBUTION DES VIBRATIONS CARACTÉRISTIQUES DES GROUPES BUTYLES LIÉS AU GERMANIUM

Lorsque nous avons fait cette étude, aucun résultat spectrographique relatif aux dérivés alcoxylés du germanium n'avait été publié, mis à part le travail de Cross et Glockling¹⁵. Ces auteurs signalent quelques fréquences de vibrations de composés germaniés ayant un groupe butyle. Récemment, nous avons eu connaissance d'un article de Mathur¹⁶ présentant quelques tentatives d'attributions sans les justifier. Nous y reviendrons dans la discussion.

Les résultats obtenus lors de l'étude des dérivés butylés de l'étain³ et du silicium⁵ nous ont été précieux pour la discussion. En effet, les vibrations caractéristiques du groupe $-CH_2-CH_2-CH_3$ sont peu affectées par la présence de l'atome métallique.

TABLEAU 6

Fréquences et attributions des bandes des composés $(n-C_4H_9)_2Ge{\Sigma_2}^a$

$\begin{array}{c} \Sigma = -\text{Cl} \\ \text{(VII)} \end{array}$	-OCH ₃ (XXX)	-OC ₂ H ₅ (XXXI)	-O-n-C ₃ H ₇ (XXXII)	-O-n-C ₈ H ₁₇ (XXXIII)	-O-i-C ₃ H ₇ (XXXIV)	−O-t-C₄H9 (XXXV)	Attributions
2962 FF	2961 FF	2962 FF	2958 FF	2958 FF	2965 FF	2960 FF	$(v_a \text{ et } v'_s)(CH_3)_C$ $v_a(CH_2)_C \text{ et } v_a(CH_2)_{Ge}$
2923 FF	2924 FF	2925 FF	2924 FF	2926 FF	2929 F	2927 FF	$v_{s}(CH_{3})_{c}$ et $v_{s}(CH_{2})_{c}$
2902 (e)	2904 (e)	2901 (e)	2901 (e)	2901 (e)	2902 (e)	2901 (e)	v _s (CH ₂) _{Gr}
2873 F	2871 f	2871 F	2871 f	2871 f	2873 F	2871 f	$2\delta(CH_{2})_{c}$
2856 F	2857 f 2817 f	2858 F	2854 f	2855 F	2858 F	2858 f	$2\delta'_{s}(CH_{3})_{c}$
1465 F	1465 F	1465 F	1464 F	1466 F	1465 F	1465 F	$\delta_{1}(CH_{3})_{C}$
1456 m	1455 F	1456 F	1456 F	1456 F	1456 m	1457 F	$\delta(CH_{3})_{c}$
1440 f	1445 m	1445 ſ	1441 f (e) 1430 (e) 1420 f	1446 f (e)	1445 f	1447 f (e)	$\delta'_{s}(CH_{3})_{C}$
1420 f	1414 f 1408 f	1415 f	1415 f	1414 f 1405 f	1414 f	1415 f	δ(CH ₂) _{Ge}
		1202 5	1388 I (e)	1388 (e)		1204	
1200	1 3 7 0	1383 F	1383 m	1384 (e)	1277 5	1384 m	S (CUL)
1380 m	13/9 m	13// (e)	13/6 F	1378 mF	13// F	13// m	$o_{s}(CH_{3})_{C}$
1367 (e)	1366 (e)	1362 (e)	1366 (e)		1364 m	1359 F	
1345 mF	1344 f	1344 mf	1340 mf	1345 mf	1347 f 1334 (e)	1340 f	v(Bu)
1296 mf	1297 f	1295 mf	1293 f	1297 mf	1297 ff	1295 f	v(Bu)
1265 f	1270 ff	1261 f	1270 f	1273 f	1270 ff	1270 ff	v(Bu)
			1251 (e)	1254 f		1251 (e)	
				1237 (e)		1230 m	
1194 m	1199 (c)	1194 m	1195 f	1196 (e)	1199 ff	1195 F	
1182 m	1184 mF	1187 (e)	1183 mf	1184 mf	1186 f	1186 (e)	v(Bu)
1174 m (e)	1176 mF	1173 mf	1173 mf	1173 mf	1167 m	1173 (e)	
1158 (e)	1134 (e)	1157 m	1139 f				
			1123 f	1120 mf	1125 F		
1105 (e)			1101 m		1117 FF		
1085 FF	1083 (e)	1098 F	1082 F		1082 f	1081 m	$\rho(CH_3)_C$
1061 ff	1059 F	1064 mF	1072 F	1067 F			
1050 ff	1049 mF	1055 F	1060 mF 1050 (e) 080 E	1073 FF 1052 F	972 FF	972 FF 1048 ff	r(CO)
1030 mf	1024 (e)	1028 mf	1022 mf	1025 m	1030 (e)	1025 m	
1001 m	1024 (c) 1001 m	1028 m 1001 m	1000 (e)	999 mf	1000 f (e) 983 (l)	1000 f	$\rho(CH_3)_C$
964 mF	963 т	963 m	962 f 928 f	963 mf	963 F (e)	966 FF	v(CC)
		910 m	908 f	903 f		904 f	
884 F	881 mF	883 F	884 mF	882 mF	880 m	884 mF	v(Bu)
874 F (e)	871 m (e)	871 mF	871 m	871 mF	871 m	870 (e)	v(Bu)
855 m	851 mf	852 m	850 (e)	851 F	846 FF	846 m	v(Bu)
	827 (e)			844 FF			()
807 f		806 f				784 (e)	
			785 mF	785 (e)		780 mF	
773 mf	773 f	773 f	773 m	773 f	773 f	772 f	v(Bu)
751 m	751 m	751 6	749 €	740 €	740 m	740 f	A(CH)
720 m	715 mF	716 m	713 m	770 ~~	777 f	716 m	p(C112)C
/ = V 111	/15 mi	710 111	/15 Щ	720 III ·	1221	/10/11	· · · · · · · · · · · · · · · · · · ·

$\begin{array}{c} \Sigma = -Cl \\ (VII) \end{array}$	-OCH ₃ (XXX)	-OC2H5 (XXXI)	-O-n-C ₃ H ₇ (XXXII)	-O-n-C ₈ H ₁₇ (XXXIII)	-O-i-C ₃ H ₇ (XXXIV)	−O-t-C₄H9 (XXXV)	Attributions
689 mF	690 (c) 680 F	681 F	683 F 676 (e)	684 F	684 mF	689 F	$\rho(CH_2)_{Ge}$
664 f 651 (e)	664 (e)	654 m 660 mF	651 F 647 (e)	655 F 661 F	660 F 666 (c)	655 mF	
642 (c) 620 (c)	648 (c)		637 F	634 (e) 615 m	639 (e)	645 (e) 615 F	
()	605 FF	603 f	588 🕯	604 m	602 mf	604 FF	
579 f	573 ff	572 ff	569 f	577 f (e)	579 f	564 f (e) 473 F (l)	$v_s(GeC_2) + v_s(GeO_2)$
462 m	462 m	463 m	461 f	460 m	460 m	462 mF	v(Bu)

TABLEAU 6 (suite)

" Les fréquences attribuées à v(CO) sont en italiques et celles correspondant à des vibrations propres au groupe butyle sont indiquée v(Bu).

Vibrations de valence v(CH)

La région où se situent ces vibrations est particulièrement délicate à interpréter, car on attend entre 3000 et 2700 cm⁻¹: les vibrations de valence $v_a(CH_3)$, $v'_s(CH_3)$, $v_s(CH_3)$, $v_a(CH_2)_C$, $v_s(CH_2)_C$, $v_a(CH_2)_{Ge}$ et $v_s(CH_2)_{Ge}$, et les harmoniques des vibrations de déformation $\delta(CH_2)$ et $\delta(CH_3)$.

Nous nous sommes appuyés pour notre raisonnement, sur l'étude du spectre Raman de $(n-C_4H_9)_3$ GeOGe $(n-C_4H_9)_3$ que nous avons enregistré et pour lequel on note, dans cette région, les raies suivantes : 2961 cm⁻¹; 2929 cm⁻¹ (P); 2893 cm⁻¹ (P); 2875 cm⁻¹ et 2857 cm⁻¹ (P=polarisée). Par analogie avec la série stannique³, nous attribuons à l'ensemble des vibrations (v_a et v'_s)(CH₃)_C la suite de fréquences 2957±2 cm⁻¹ pour les composés tributylés (V), (VI), (VIII), (XVII)–(XXIII) et 2960±2 cm⁻¹ pour les composés dibutylés (VII), (XXX)–(XXXV).

Fig. 2. Courbes d'absorption $\varepsilon = f(v)$ de dérivés germaniés méthylés.

(continué p. 84)

J. Organ	FABLEAU 7 RÉQUENCES ET ATTRUNUTI	IONS DES RANDES DES DÉRIVÉS C	Y CLIQUIS GERMANIËS À L'ÊTAT DIMÊRE ⁴	_	
ں ometal	H ₃ O-CH ₂	n-C ₄ H ₉ O-CH ₂	n-C4H9 O-CH2	n-C4H9 O-CH2-CH2	Attributions
Che	H, ~ O-CH,	n-C4H6 ~~ ~	n-C ₄ H ₉ O-CH ₂	n-C4H9 O-CH2-CH2	
ح ا m., 20	(1/XXX)	(IIVXXX)	(XXXVIII)	(XXXX)	
। ≂ः 6 (197	993 FF	2955 FF↓	2953 FF	2957 F	$\begin{cases} (v_{n} \text{ et } v_{n}^{*})(CH_{3}) \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots$
≍i 1) 69–	922 FF	2929 FF 2906 F	2923 FF 2908 FF	2930 FF 2915 FF	(V _a (CH ₂)c et V _a (CH ₂)G V ₅ (CH ₃)c et V ₅ (CH ₂)c
≈ 100	861 FF	1 9606			15(~112/Gc
		28/81 2862 m	2867 m	1 0887	
			2853 mF 2836 m	2858 m 2842 f	2 <i>8</i> ',(CH ₃)c
1	147 F				
		1465 F	1465 F	1465 F	δ _a (CH ₃) _C
		1455 F	1456 m	1457 mF	$\delta(CH_2)_c$
		1448 m	1448 f	1449 m	8''(CH ₃)c
				1431 mF	
		1412 f		1415 m	
		1406 f		1406 f	δ(CH,) ₆₂
	372 f		1396 f 1302 f	1398 f (c)	
	356 f	1377 m			
		1373 m		1374 F	δ _s (CH ₃) _C
		1339 f	m ccc1	1358 mf 1341 f	
12	285 f				
				1291 m 1271 m	
		1231 f			
1	243 F	1216 f 1195 f		1201 m	

82

v(Bu)	ρ(CH ₃)c	v(C0)	ρ(CH ₃)c	· v(CC)			v(Bu)	v(Bu)			ρ (CH ₂)c		ρ (CH ₂) _{Ge}					$v_s(GeC_2)$ et $v_s(GeO_2)$			
1185 f 1174 f	1093 FF 1084 F (e) 1074 m	1028 FF	1000 f 987 f	964 Г	937 m		882 f	868 f	849 mf			715 5	(90 (c)	080 m C	628 f	619 (c)	606 F	574 (c)	480 mf		
1172 f 1135 f	1031 1038 (c)	108Ô FF	1000 f	963 f	952 (c) 931 mF		881 F	871 f	848 mf	823 m	751 f	715 m	690 F	682 F	623 mf		607 F	577 (c) 531 m (c)	:	495 f 464 f	
1182 f 1175 f	1112 m 1095 mF 1083 mF 1071 (е)	1041 FF	1000 m	964 mf 922 mf (c) 907 m		892 mF	883 mF	870 (c)	849 (c)		750 f	715 m	691 F (c)	71 C/0	635 FF		610 f	587 mf 560 f		493 [464 [es Tableaux 3-6.
	1112 F 1097 FF	1078 F 1041 FF		963 m 910 mF		892 mF 884 F				841 f											" Voir légende d

83

Dans tous les dérivés étudiés, on n'observe qu'une bande située à $2926 \pm 3 \text{ cm}^{-1}$, qui pourrait être due à une vibration symétrique $v_s(CH_3)$ puisqu'il lui correspond une raic Raman polarisée à 2929 cm⁻¹ pour (VIII). Cependant, comme son intensité augmente avec le nombre de CH₂ des radicaux alcoxylés [(XVIII), (XIX), (XXII) et (XXX)-(XXXIII)], elle paraît provenir également de la vibration $v_s(CH_2)_c$. Nous attribuerons donc la suite $2926 \pm 3 \text{ cm}^{-1}$ à l'ensemble des vibrations $v_s(CH_3)_c$ et $v_s(CH_2)_c$.

A la raie Raman forte et polarisée observée à 2893 cm⁻¹ dans $(n-C_4H_9)_6Ge_2O$ correspond une bande infrarouge à 2898 ± 3 cm⁻¹ que nous affectons à la vibration $v_s(CH_2)_{Ge}$.

L'attribution des fréquences des vibrations $v_s(CH_2)_C$ et $v_a(CH_2)_{Ge}$ est assez délicate. Cependant, il est logique d'attendre cette dernière à une fréquence supérieure à celle de la vibration $v_s(CH_2)_{Ge}$. Les suites $2928 \pm 4 \text{ cm}^{-1}$ et $2957 \pm 2 \text{ cm}^{-1}$ pourraient donc convenir. Nous retenons de préférence cette dernière fréquence par comparaison avec les dérivés méthylés. Le même raisonnement s'applique à la vibration $v_a(CH_2)_C$ qui, de plus, est attendue à une fréquence proche de celle de $v_a(CH_3)_C$; nous lui faisons correspondre la suite de bandes vers 2960 cm⁻¹ comme le montrent les Tableaux 4 et 6.

Nous affectons les absorptions $2854 \pm 3 \text{ cm}^{-1}$, non pas à $v_s(CH_2)_c$ comme le fait Snyder¹⁷, mais à l'harmonique $2\delta'_s(CH_3)_c$ en accord avec Lavalley¹⁸. De même, la suite de bandes à $2872 \pm 2 \text{ cm}^{-1}$ peut être considérée comme l'harmonique $2\delta(CH_2)_c$.

Vibrations de déformation des groupes CH₃ et CH₂

Nous nous sommes servis, pour l'attribution de ces fréquences, de quelques résultats cités dans la littérature sur les vibrations de déformation des groupes CH₃ de radicaux éthyles liés au germanium^{15,19,20}. En accord avec ceux-ci nous situerons les vibrations de déformation δ_s , δ'_s et δ_a (CH₃) respectivement aux fréquences 1378±2, 1445±1 et 1465±1 cm⁻¹.

On remarque que ces valeurs sont voisines de celles des vibrations correspondantes des dérivés siliciés (1377, 1458, 1465 cm⁻¹) et stanniques (1379 \pm 3, 1446 \pm 4, 1465 \pm 2 cm⁻¹) ce qui confirme l'absence d'influence de l'atome de métal sur les groupes CH₃ du fait de leur éloignement. Ce résultat est en accord avec ceux obtenus en séries siliciée et stannique.

Nous attribuerons la vibration de déformation $\delta(CH_2)_{Ge}$ à la fréquence $1414 \pm 1 \text{ cm}^{-1}$ observée dans tous les dérivés étudiés. Elle occupe pratiquement la même position dans les homologues siliciés et stanniques, sans que l'on puisse faire intervenir cette fois l'hypothèse de l'éloignement.

En ce qui concerne la vibration $\delta(CH_2)_c$, elle est attendue entre $\delta_a(CH_3)$ et $\delta_s(CH_3)$ et semble correspondre à la suite 1455 ± 3 cm⁻¹, ce qui est en accord avec Snyder¹⁷.

Vibrations de balancement ou "rocking" des CH₃ et CH₂

Dans les composés butylés mono- et dialcoxylés, on trouve deux suites de fréquences très constantes à 1080 ± 3 cm⁻¹ et 1000 ± 1 cm⁻¹ que l'on attribue aux vibrations de rocking des groupes CH₃: r(CH₃).

Sheppard²¹ situe vers 750 cm⁻¹ dans les hydrocarbures la vibration r (CH₂)_C à laquelle correspondent, dans notre cas, les bandes à 752 \pm 4 cm⁻¹. Quant à la vibration r (CH₂)_{Ge} nous la situons à 690 \pm 3 cm⁻¹ par comparaison avec les divers spectres.

III. ATTRIBUTION DES VIBRATIONS CARACTÉRISTIQUES DES DIGERMOXANES

Vibrations de valence $v_a(GeOGe)$ et $v_s(GeOGe)$

Dans l'hexaméthyldigermoxane (IV) et l'hexabutyldigermoxane (VIII), on attend deux vibrations de valence, l'une antisymétrique v_a (GeOGe), l'autre symétrique v_s (GeOGe).

Un certain nombre d'auteurs ne signalent qu'une vibration du groupe GeOGe: Brown et Okawara la situent vers 880 cm⁻¹ pour l'hexaméthyldigermoxane²⁶. Zueva lui attribue la région 700–950 cm⁻¹ pour des polymères germaniés²². Cette vibration est placée par Chumaevski à 855 cm⁻¹ pour $(C_6H_5)_6Ge_2O^{12}$; enfin, Wojciechowski et ses collaborateurs la trouvent à 858 cm⁻¹ dans le cas de $K_2Ge_2F_{10}O^{23}$.

Pour préciser la position de la bande d'absorption due à v_a (GeOGe), nous avons réalisé un effet de solvant au moyen d'un donneur de protons tel que le chloroforme ou le bromoforme. Nous attribuons à la vibration v_a (GeOGe) la bande d'absorption la plus intense du spectre, située à 794 cm⁻¹ dans l'hexaméthyldigermoxane (IV) et à 841 cm⁻¹ dans l'hexabutyldigermoxane (VIII) car, dans le chloroforme, elle est respectivement abaissée de 10 et 6 cm⁻¹. L'effet de solvant, malheureusement, ne peut être utilisé au-dessous de 600 cm⁻¹, le chloroforme ou le bromoforme n'étant pas transparents. Nous nous sommes servis des renseignements fournis par les spectres Raman des composés (IV) et (VIII) à l'état liquide pur: ils présentent une bande forte et polarisée à 470 cm⁻¹ et 400 cm⁻¹ à laquelle correspond en infrarouge une absorption. Ces résultats sont en accord avec ceux de Cradock²⁴ pour H₃GeOGeH₃.

Enfin, les attributions proposées pour v_a et v_s (GeOGe) montrent que l'écart entre ces deux vibrations est de 327 cm⁻¹ pour le dérivé méthylé et de 441 cm⁻¹ pour le dérivé butylé. Nous reviendrons par la suite sur cette remarque.

Vibrations de valence $v(GeC_3)$

Outre les vibrations de valence v(GeOGe) et la vibration de déformation $\delta(GeOGe)$, qui doit absorber hors du domaine spectral étudié, on attend pour les hexaalkylgermoxanes les vibrations de valence $v(GeC_3)$ caractéristiques de la liaison entre le germanium et les trois groupements carbonés R. Par analogie avec les études antérieures de composés homologues siliciés et stanniques, le domaine d'absorption de ces vibrations est prévu entre 750 et 500 cm⁻¹. Le nombre de fréquences distinctes v(GeC) dépend d'une façon générale de la structure de la molécule étudiée.

Pour $(CH_3)_4$ Ge (I) et $(CH_3)_3$ GeCl (II), la molécule peut posséder un axe ternaire: on attend uniquement une vibration symétrique v_s (GeC) et une vibration dégénérée v_d (GeC). Le spectre infrarouge de $(CH_3)_4$ Ge ne présente qu'une seule bande forte à 600 cm⁻¹ tandis que le spectre Raman donné par divers auteurs²⁵⁻³⁰ présente deux raies à 595 et 560 cm⁻¹ attribuées respectivement à v_d et v_s (GeC).

Pour les germoxanes (IV) et (VIII), on observe de faibles absorptions respectivement à 576 et 565 cm⁻¹. Comme il leur correspond des bandes fortes polarisées sur les spectres Raman, nous les affectons à la vibration de valence v_s (GeC₃). Ceci est en accord avec les résultats de Brown⁸ qui rélève une seule bande forte et polarisée à 572 cm⁻¹ sur le spectre Raman de l'hexaméthyldigermane.

L'intense absorption à 607 cm⁻¹ dans $(CH_3)_3$ GeOGe $(CH_3)_3$ est affectée à v_a (GeC₃) et v'_s (GeC₃) car une bande Raman est observée à cette même fréquence. Par contre, dans l'hexabutylgermoxane, on peut se demander s'il n'y a pas un couplage entre les mouvements v_a et $v'_s(GeC_3)$ et des vibrations de balancement du groupement CH₂ (Tableaux 1 et 4).

IV. ATTRIBUTION DES VIBRATIONS CARACTÉRISTIQUES DES MONOALCOXYGERMANIUMS

L'étude spectrographique de monoalcoxygermaniums n'a pratiquement pas été abordée jusqu'à présent sauf par Cradock²⁴ et Maire¹⁶. Pour la molécule H₃GeOCH₃ à l'état gazeux, Cradock attribue à la vibration v(CO) le triplet 1084, 1074 et 1070 cm⁻¹ et fait correspondre le massif vers 640 cm⁻¹ à l'élongation v(GeO)couplée avec un balancement r(GeH₃).

Au moment de publier notre étude, Maire a présenté quelques résultats concernant des alcoxygermaniums butylés en situant, sans justification, plusieurs vibrations: $v_s(CO)$, $v_(CO)$, $v_a(CO)$ et v(GeO).

Par analogie avec les composés alcoxysiliciés et -stanniques on attend un couplage entre les vibrateurs GeO et CO qui, s'il existe, tend à écarter les fréquences v(GeO) et v(CO) des groupes isolés. Les deux vibrations de valence $v_s(GeOC)$ et $v_a(GeOC)$ se situeront, la première entre $v_s(SiOC)$ et $v_s(SnOC)$, la deuxième entre $v_a(SiOC)$ et $v_a(SnOC)$ de dérivés homologues. En l'absence de couplage important, on observera une vibration v(GeO) vers 625 cm⁻¹ (correspondant à $v_m(GeO)$ des digermoxanes) et une vibration v(CO) entre 1100 et 1000 cm⁻¹ (correspondant à $v_m(CO)$ des éthers-oxydes). Un calcul approché des constantes de force des méthoxy-trialkylgermaniums, par la méthode de Wilson³¹, nous a montré que le couplage est très faible entre les vibrateurs CO et GeO mais dépend sensiblement de la valeur de l'angle GeOC, malheureusement inconnue pour nos dérivés. On peut donc chercher à caractériser les vibrations de valence v(CO) et v(GeO).

Vibrations de valence v(CO)

Pour les monoalcoxygermaniums, on note en général, entre 1100 et 960 cm⁻¹, une bande intense qui n'apparaît pas sur les spectres des dérivés $(CH_3)_4$ Ge, $(CH_3)_3$ -GeOGe $(CH_3)_3$ et $(CH_3)_3$ GeCl; nous l'attribuons à la vibration v(CO) (Tableaux 3 et 4). Les spectres enregistrés en utilisant le chloroforme comme solvant permettent de confirmer cette interprétation (Tableau 8).

Cependant, dans certains cas, l'attribution est délicate. Ainsi, pour les dérivés éthoxylés (X) et (XVIII), on observe deux bandes, l'une à 1100 cm⁻¹, forte, l'autre à 1064 cm⁻¹, très forte. La fréquence de la première n'est que légèrement déplacée pour une solution dans le chloroforme, alors que celle de la deuxième est abaissée à 1056 cm⁻¹. Nous attribuons cette dernière à v(CO) et celle à 1100 cm⁻¹ au groupe OC_2H_5 , comme cela a été généralement observé dans des dérivés éthoxylés²⁻⁵.

Dans les dérivés phénoxylés (XVI) et (XXIII), les vibrations v(CO) sont couplées avec les vibrations du noyau benzénique situées à 992 et 606 cm⁻¹ de sorte que l'on doit attendre 4 vibrations. Comme pour les anisoles³², les phénoxysilanes² et le phénoxytributylétain³, on situe la plus haute fréquence (v_e) à 1254±2 cm⁻¹. Cette bande est légèrement déplacée quand on utilise le chloroforme (Tableau 8).

Dans le cas du dérivé $(CH_3)_3$ GeO-n- C_3H_7 (XI) ayant pour substituant un groupe n-propyle, les deux bandes fortes, situées à 1064 et 980 cm⁻¹ se déplacent en présence d'un solvant donneur de protons. La bande de plus haute fréquence pourrait

Composés	No.	ν(CO)					
		dans CS ₂	dans HCCl ₃				
(CH ₃) ₃ GeOCH ₃	(IX)	1061	1052				
(CH ₃) ₃ GeOC ₂ H ₅	ίx)	1064	1056				
(CH ₃) ₃ GeO-n-C ₃ H ₇	(XI)	1064	1055				
		980	971				
$(CH_3)_3$ GeO-n-C ₈ H ₁₇	(XII)	1070	1062				
(CH ₃) ₃ GeO-i-C ₃ H ₇	(XIII)	980	970				
(CH ₃) ₃ GeO-t-C ₄ H ₉	(XIV)	972	963				
(CH ₃) ₃ GeOC ₆ H ₁₁	(XV)	1071	1062				
(CH ₃) ₃ GeOC ₆ H ₅	(XVI)	1256	1252				
(n-C₄H₀)₃GeOCH₃	(XVII)	1056	1047				
$(n-C_4H_9)_3GeOC_2H_5$	(XVIII)	1064	1058				
(n-C ₄ H ₉) ₃ GeO-n-C ₈ H ₁₇	(XIX)	1074	1063				
(n-C ₄ H ₉) ₃ GeO-i-C ₃ H ₇	(XX)	980	966				
(n-C ₄ H ₉) ₃ GeO-t-C ₄ H ₉	(XXI)	971	956				
$(n-C_4H_9)_3GeOC_6H_{11}$	(XXII)	1070	1062				
(n-C ₁ H ₉) ₃ GeOC ₆ H ₅	(XXIII)	1252	1250				

TABLEAU 8

FRÉQUENCES D'ABSORPTION DE LA VIBRATION v (CO) DES MONOALCOXYTRIALKYLGERMANIUMS

être attribuée à la vibration v(CO), mais l'origine de la seconde absorption nous a posé un problème. La possibilité d'une impureté dans ce composé a été écartée après vérification par résonance magnétique nucléaire et par chromatographie en phase gazeuse. Les spectres des chloro-n-propylgermaniums²⁰ ne présentant aucune absorption vers 980 cm⁻¹, la bande observée à cette fréquence sur les spectres de nos composés alcoxylés ne peut être attribuée à une vibration v(C-C) du groupe propyle. De plus, comme elle subit un déplacement dans le bromoforme (9 cm⁻¹), il paraît plus logique de l'attribuer à une vibration v(CO). La présence des deux bandes v(CO) peut être interprêtée, par une isomérie de rotation du groupe alcoxyle autour de la liaison C-O:

En considerant la projection de Newman de la molécule $R_3GeO-n-C_3H_7$ suivant cette liaison on voit qu'il existe théoriquement deux positions. Les deux absorptions observées à 1064 et 980 cm⁻¹ sur le spectre pourraient donc être attribuées aux deux formes *trans* et *gauche* par rapport à la liaison CO de ce dérivé. Afin de confirmer cette hypothèse, nous avons effectué un effet de température qui a provoqué, comme l'effet de solvant, un balancement d'intensité au profit, dans les deux cas, de la forme la plus stable, celle où le groupe GeR₃ est le plus éloigné du groupe éthyle.

Récemment Fourche³³ a montré que le passage d'une forme *trans* à une forme *gauche* d'un éther-oxyde ou d'un polyoxyéthylène exige moins d'énergie lorsque la rotation a lieu autour d'une liaison C-C qu'autour d'une liaison C-O. Il est permis de

penser, de la même façon, que l'écart entre les états d'énergie des isomères décrits précédemment sera moins grand lors d'une rotation autour de C–O. De ce fait, on pourra distinguer dans ce dernier cas, par spectroscopie infrarouge, les deux formes *trans* et *gauche* : elles correspondent aux bandes à 1065 et 980 cm⁻¹ et c'est bien ce que l'on observe.

Cependant, la possibilité de l'isomérie autour de la liaison C_1 - C_2 décrite par Chvalovsky²⁰ n'est pas exclue mais elle est difficilement observable à température ambiante.

Dans le spectre infrarouge de R_3 GeO-i- C_3H_7 , l'absorption à 971 cm⁻¹, seule sensible à un solvant polaire, correspond à une conformation unique de la molécule:

bien qu'il y ait deux projections possibles suivant la liaison CO, mais la seconde fait intervenir un encombrement stérique trop important. Il en est de même pour R_3GeO -t- C_4H_9 où l'on note également une seule bande vers 972 cm⁻¹ attribuée à v(CO).

Enfin, pour les autres composés oxygénés du germanium, dont le groupe alcoxyle est linéaire, nous n'avons observé qu'une seule absorption due à v(CO) vers 1065 cm⁻¹ (Tableau 7), exception faite pour les dérivés éthoxylés. Dans ce cas, seule l'absorption à 910 cm⁻¹ se déplace de 5 cm⁻¹ en présence d'un solvant polaire. Nous pensons qu'il peut s'agir d'une bande v(CO) couplée avec v(CC) correspondant à une autre conformation possible par rotation autour de la liaison CO. Malheureusement, aucune confirmation de cette hypothèse n'a pu être obtenue: il n'a pas été possible d'enregistrer le spectre infrarouge de ces dérivés à l'état cristallisé, même à la température de l'azote liquide: on obtient en effet presque toujours des verres.

Vibrations de valence $v(GeC_3)$ et v(GeO)

Comme on l'a vu précédemment, les vibrations de valence $v(GeC_3)$ sont attendues dans la même région que v(GeO); nous les avons donc étudiés simultanément.

Le Tableau 1 rassemble les fréquences des bandes infrarouges et Raman observées entre 660 et 550 cm⁻¹ pour les alcoxytrialkylgermaniums et les hexaalkylgermoxanes. Dans tous les cas, on observe une faible absorption vers 570 cm⁻¹ à laquelle correspond une bande Raman forte et polarisée sur les spectres des dérivés (IX), (XI), (XIII), (XVII) et (XIX). Par analogie avec les spectres Raman de (CH₃)₆Ge₂⁸ et des dérivés (I), (II), (IV) et (VIII), elle est attribuée à la vibration de valence v_s (GeC₃). Aucune autre bande Raman forte et polarisée n'a pu être pointée dans le domaine 600–520 cm⁻¹ où se situerait la vibration v_s (GeOC), ce qui confirme l'absence de couplage et conduit à chercher une vibration v(GeO), au-dessus de 600 cm⁻¹. La suite de bandes infrarouges à 614 ± 3 cm⁻¹, relevée sur les spectres des dérivés triméthylés, pourrait être attribuée à v(GeO) puisqu'une telle absorption n'apparaît pas sur le spectre de (CH₃)₃GeOGe(CH₃)₃ mais il ne lui correspond aucune suite intense dans les dérivés butylés.

Les difficultés rencontrées pour interpréter dans cette région les spectres des

divers alcoxytrialkylgermaniums nous ont amenés à effectuer des calculs par la méthode décrite par Wilson³¹ sur le groupe C₃GeO. En prenant les distances d(Ge-O) 1.83 Å^{34.35} et d(Ge-C) 1.95 Å³⁶, tous les angles égaux à 109°28', nous avons calculé la matrice G. La constante de force k(GeO), déterminée à partir des fréquences expérimentales est voisine de 3.0×10^5 dyn·cm⁻¹; k(GeC) a été prise égale à 2.8×10^5 dyn·cm⁻¹, comme dans le tétraméthylgermanium⁸. Les valeurs des constantes de force des déformations symétrique δ_s et dégénérée $\delta_d(GeC_3)$ ont été choisies égales à 0.8×10^{-11} dyn·cm·rad⁻² et celles des rocking r(GeC₃) ont été supposées égales à $3^{37} 0.7 \times 10^{-11}$ dyn·cm·rad⁻².

Les fréquences calculées ainsi sont les suivantes: 646, 641, 563, 263, 258 et 251 cm⁻¹. La fréquence 646 cm⁻¹ correspond à 76% de v(GeO) et 23% de $v_s(\text{GeC}_3)$ tandis qu'à la fréquence 563 cm⁻¹ correspondent 77% de $v_s(\text{GeC}_3)$ et 23% de v(GeO). La vibration de valence dégénérée $v_d(\text{GeC}_3)$ est à 641 cm⁻¹: elle est pratiquement pure.

Ce calcul montre qu'en raison des masses et des constantes de force, on doit avoir une vibration dans laquelle tous les atomes de carbone et d'oxygène vibrent en phase et qui donnera lieu à une bande Raman forte et polarisée : on l'observe bien vers 570 cm^{-1} .

Les deux autres modes de vibration se trouvent à des fréquences très proches. On pourra donc, dans certains cas, observer une forte absorption infrarouge dont le degré de dégénérescence sera plus ou moins levé. Le doublet 614 ± 3 cm⁻¹ et 607 ± 3 cm⁻¹ dans le cas des dérivés méthylés pourrait correspondre à cette description. Pour les composés butylés, comme on l'a dit précédemment, il est possible que des vibrations des groupes C_4H_9 perturbent ce domaine de fréquences.

Ces résultats diffèrent de ceux que nous avions proposés dans une note préliminaire⁶, en l'absence de données suffisantes.

V. ATTRIBUTION DES VIBRATIONS CARACTÉRISTIQUES DES DIALCOXYDIALKYLGERMANIUMS

Dans les dialcoxydialkylgermaniums caractérisés par le groupe

les vibrateurs GeO et CO ne sont pas couplés. Par contre, on peut attendre un couplage entre les vibrateurs GeO du groupe OGeO ce qui donnerait lieu à deux vibrations de valence, l'une antisymétrique $v_a(GeO_2)$, l'autre symétrique $v_s(GeO_2)$. De même, un couplage entre les vibrateurs GeC doit théoriquement conduire aux vibrations $v_a(GeC_2)$ et $v_s(GeC_2)$.

Les calculs effectués ayant montré que les constantes de force de GeO et GeC sont du même ordre de grandeur, il est possible de considérer le système C = C = C comme un groupe "quasi tétraédrique". La vibration en phase donnera

lieu à une bande Raman intense et polarisée que l'on peut affecter à v_s (GeO₂) et v_s (GeC₂). Pour tous nos dérivés, on relève une bande Raman vers 570 cm⁻¹ correspondant à cette description.

L'autre vibration triplement dégénérée sera active en infrarouge : on observera une forte absorption dont le degré de dégénérescence sera plus ou moins levé. Le massif intense et complexe s'étendant entre 670 et 610 cm⁻¹ sur les spectres de nos dérivés peut être attribué à l'ensemble v_a (GeO₂) et v_a (GeC₂) (Tableau 2).

Nous ne nous étendrons pas plus sur ces attributions en l'absence de données supplémentaires sur la structure de ces molécules. Nous nous contenterons de caractériser les dialcoxydialkylgermaniums par la vibration v(CO) plus facile à identifier.

Vibrations v(CO)

Par analogie avec d'autres dérivés dialcoxylés métalliques étudiés au laboratoire^{3.5}, nous attendons pour l'élongation v(CO) une intense absorption proche de celle de la vibration v(CO) des monoalcoxygermaniums. La comparaison entre les spectres des dichlorodialkylgermaniums (III) et (VII) et ceux des composés germaniés dialcoxylés synthétisés. (XXIV)–(XXXV), montre sur ces derniers la présence d'une forte absorption entre 1100 et 950 cm⁻¹ présentant généralement deux maxima. L'interprétation d'un tel massif et son attribution à la vibration v(CO) est particulièrement délicate.

(i). D'une part, dans la région considérée, on observe un certain nombre de bandes provenant des vibrations des substituants; c'est ainsi que l'absorption pointée à 1070 cm⁻¹ pour (CH₃)₂GeCl₂ se retrouve dans le cas des composés méthylés tandis que les bandes propres aux groupes butyles situées à 1085, 1061, 1050 et 964 cm⁻¹ dans (n-C₄H₉)₂GeCl₂ sont présentes sur les spectres des composés butylés. Lorsqu'on passe aux dialcoxydialkylgermaniums correspondants, ces bandes interfèrent avec v(CO) et ont leur intensité modifiée par rapport à celle observée sur les spectres des dichlorodialkylgermaniums.

(*ii*). D'autre part, l'utilisation d'un solvant donneur de protons ne permet pas de résoudre le problème des attributions car on note dans la plupart des cas un déplacement global des massifs.

Nous examinerons successivement les différents composés et nous tenterons de justifier les attributions proposées dans chaque cas. Pour les diisopropoxy- et di-tert-butoxydialkylgermaniums, il n'y a pas de problème car on attend une fréquence v(CO) relativement basse. On attribue à cette vibration les bandes intenses situées respectivement à 963 cm⁻¹ pour (XXIX) et 972 cm⁻¹ pour (XXVIII), (XXXIV) et (XXXV). Comme on le voit sur le Tableau 9, ces absorptions sont très intenses et sont particulièrement sensibles au solvant donneur de protons. Pour les dérivés dibutylés, on observe dans la même région un massif contenant la vibration due à la liaison C-C des groupes butyles.

L'interprétation des spectres des dérivés dialcoxylés dont les radicaux ne sont pas ramifiés (XXIV)–(XXVII) et (XXX)–(XXXIII) est plus difficile. Pour les dérivés diéthoxylés (XXV) et (XXXI), on peut penser que les bandes situées respectivement à 1062 et 1064 cm⁻¹ ne sont pas déplacées par effet de solvant tandis que celles à 1053 et 1055 cm⁻¹, plus intenses, s'abaissent à 1048 et 1053 cm⁻¹. Ces dernières sont attribuées à v(CO). Dans le cas des composés di-n-propoxylés (XXVI) et (XXXII), on relève, outre une bande à 1058 ± 2 cm⁻¹ attribuée à v(CO), une deuxième absorption vers 980 cm⁻¹ qui est également fortement déplacée dans le chloroforme (Tableau 9). L'interprétation proposée pour le dérivé (CH₃)₃GeO-n-C₃H₇ est valable : la présence

Composés	No.	к(CO)					
		CS ₂	HCBr3 ou HCCl3				
(CH ₃) ₂ Ge(OCH ₃) ₂	(XXIV)	1061 mF	1046 mF				
		1049 F	1037 F				
$(CH_3)_2Ge(OC_2H_5)_2$	(XXV)	1062 (e)	1062 (e)				
		1053 F	1048 F				
$(CH_3)_2Ge(O-n-C_3H_7)_2$	(XXVI)	1070 mF	1070 mF				
		1056 F	1046 F				
	00000	980 F	9/2 F				
$(CH_3)_2Ge(O-n-C_8H_{17})_2$	(XXVII)	1003 F	1005 mr				
$(CH) Co(O \in C H)$		1051 mr					
$(CH_3)_2 Ge(O+C_3H_7)_2$		9/2 IF	904 IF				
$(CH_3)_2 Ge(O-t-C_4H_9)_2$	(AAIA)	903 I F	900 I F				
(n-C.H.).Ge(OCH.).	(XXX)	1059 E	1048 F				
(1-04119)200(00113)2	(7000)	1049 5	1037 mF				
$(n-C_1H_0)$ -Ge (OC_2H_2) -	(XXXI)	1064 mF	1056 mF				
(()	1055 F	1053 F				
$(n-C,H_n)$ -Ge $(\Omega$ -n-C,H_n),	(XXXII)	1082 (e)	1082 (e)				
((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1072 F	1072 F				
		1060 mF	1054 F				
		980 F	972 F				
$(n-C_4H_9)_2Ge(O-n-C_8H_{17})_2$	(XXXIII)	1073 TF	1066 F				
	. ,	1067 F	1057 TF				
		1052 F	1050 F				
$(n-C_4H_9)_3Ge(O-i-C_3H_7)_2$	(XXXIV)	983 mF	980 (e)				
	. ,	972 F	972 (e)				
		963 (e)	961 TF				
$(n-C_4H_9)_2Ge(O-t-C_4H_9)_2$	(XXXV)	972 TF	972 mF				
			958 TF				
		966 mF	966 m				

TABLEAU 9

FRÉQUENCES D'ABSORPTION DE LA VIBRATION V (CO) DES DIALCOXYDIALKYLGERMANIUMS^a

" Les fréquences en italiques correspondent à v(CO).

des deux bandes est due à l'isomérie du groupe n-propoxylé. Le spectre du composé (XXVII) ne présente apparemment aucun abaissement de fréquences: seules les intensités des bandes à 1065 et 1051 cm⁻¹ sont inversées. On peut supposer que l'absorption à 1065 cm⁻¹ provient d'un mode de vibration qui met en jeu à la fois l'élongation v(CO) et un mouvement du groupe octyle. Cette hypothèse est confirmée par la présence, pour le dérivé $(n-C_4H_9)_2Ge(O-n-C_8H_{17})_2$ (XXXIII), d'une bande à 1067 cm⁻¹ ne subissant pas de déplacement. C'est, dans ce cas, l'absorption à 1073 cm⁻¹ s'abaissant à 1057 cm⁻¹ dans le chloroforme qui peut être affectée à v(CO). Dans le cas des diméthoxydiméthyl- (XXIV) et diméthoxydibutylgermaniums (XXX), on observe un abaissement global des fréquences 1060 et 1049 cm⁻¹ (voir Fig. 3) les deux maxima paraissant plus rapprochés. Nous avons cherché à préciser l'origine de ces deux bandes et à déterminer si nous n'avions pas, comme pour certains dérivés stanniques, une autoassociation. En effet, lors de l'étude des dialcoxydibutylétains, Mendelsohn avait noté, à côté de l'absorption v(CO) à 1063 cm⁻¹, la présence d'une bande intense à 1036 cm⁻¹, dont la fréquence n'est pas abaissée dans le chloro-

Fig. 3. Effet de dilution réalisé sur le diméthoxydibutylétain (a) et le diméthoxydiméthylgermanium (b). Concentrations 1 et 4: 1 M; 2: 0.1 M et 3: 0.01 M. Rapport des densités optiques des bandes: dérivé stannique: A/B=0.88, 0.76 et 0.33; dérivé germanié: A/B=0.83, 0.78 et 0.73. La courbe en pointillé correspond à l'effet de solvant polaire réalisé sur le dérivé germanié.

forme^{38,39}. En réalisant en effet de dilution, la disparition quasi-totale de la bande de plus faible longueur d'onde lui a permis de conclure à une autoassociation entre molécules. Dans notre cas, l'effet de solvant ne nous ayant donné aucun renseignement, nous avons effectué un effet de dilution en nous plaçant dans des conditions identiques à celles utilisées pour les dérivés stanniques. La figure représente les courbes obtenues pour les types de composés. Leur comparaison montre qu'il ne s'agit pas du même phénomène.

Pour le confirmer, nous avons vérifié que les dérivés considérés étaient bien monomères en mesurant leurs masses moléculaires : $(CH_3)_2Ge(OCH_3)_2$, $PM_{calc.}$: 165; $PM_{trouvée}$: 160. $(n-C_4H_9)_2Ge(OCH_3)_2$, $PM_{calc.}$: 249, $PM_{trouvée}$: 254 (cryométrie dans le benzène). La valeur pour $(CH_3)_2Ge(OCH_3)_2$ déterminée expérimentalement est légèrement inférieure à la valeur calculée, du fait de l'erreur introduite par des traces de méthanol dues à l'hydrolyse du produit. L'effet de dilution et la cryométrie permettent donc de conclure à l'absence d'autoassociation entre les molécules des dialcoxydialkylgermaniums, à l'inverse de ce que l'on avait observé dans le cas des composés stanniques homologues.

VI. ATTRIBUTION DES FRÉQUENCES DE VIBRATION DES GERMOXACYCLOALCANES

Après avoir étudié les spectres des molécules du type R_3 GeOR' et R_2 Ge(OR')₂, nous allons essayer de transposer les résultats acquis à des composés cycliques de formule générale:

Pour $R = n-C_4H_9$, nous avons préparé les trois premiers termes de cette série (n=2, 3 et 4). Par contre, pour $R = CH_3$ seul, le premier terme (n=2) a pu être obtenu, car ces dérivés sont très instables.

Avant d'entreprendre l'étude de leurs spectres de vibrations, il était important de connaître la structure de ces molécules, c'est-à-dire, savoir si l'on avait affaire à un monomère ou à un dimère. Les résultats des mesures faites par cryométrie dans le benzène sont rassemblés dans le Tableau 10. Il découle de celui-ci que tous les com-

TABLEAU 10

MASSES MOLÉCULAIRES DES GERMOXACYCLOALCANES (C₄H₉)₂Ge $\stackrel{O}{_{O}}$ (CH₂), determinées dans le benzène par cryométrie

No.	n	PM _{calc.}	PM _{trouvée}	Concn. (%)	
(XXXVII)	2	247	514	0.6	
(XXXVIII)	3	261	520	0.6	
(XXXIX)	4	275	561	0.9	

posés cycliques considérés sont des dimères. Il faut noter, à ce sujet, que Mehrotra⁴⁰ avait trouvé que ces composés étaient des monomères, à la suite de mesures faites par ébulliométrie. Cela semblerait indiquer qu'à température ambiante, les molécules sont dimérisées et qu'au fur et à mesure que la température augmente, elles deviennent monomères. L'étude infrarouge de composés cycliques butylés ou méthylés est particulièrement difficile car ceux-ci sont très hydrolysables et réagissent avec un certain nombre de solvants organiques. En particulier, l'emploi du sulfure de carbone est impossible. Nous avons utilisé le tétrachlorure de carbone entre 3000–2800 et 1500–850 cm⁻¹; dans certains cas, le cyclohexane ou l'hexane permettent d'étudier la région 700–400 cm⁻¹.

Le Tableau 7 rassemble les fréquences des vibrations des quatre composés cycliques étudiés et leurs attributions. Les spectres infrarouges de ces molécules devraient présenter les vibrations caractéristiques des groupes butyles, des groupes CO, CGeC et OGeO, ainsi que celles propres au cycle. Dans le cas des dérivés butylés, la vibration v(CO) a pu être identifiée comme étant la plus intense du spectre. Elle est fortement déplacée dans le chloroforme. Quant aux vibrations autres que celles du groupe butyle, il n'a pas été possible de les caractériser avec certitude. D'autre part, les attributions des bandes propres aux cycles n'ont pu être faites par comparaison avec les dérivés homologues siliciés et stanniques. En effet, tous les composés cycliques germaniés sont dimères alors que les isologues siliciés étudiés précédemment en infrarouge⁵ sont monomères, à l'exception de :

$$CH_3$$
 Si $O-CH_2-CH_2-O$ Si CH_3
 CH_3 Si $O-CH_2-CH_2-O$ Si CH_3

Quant aux dérivés stanniques, il a été montré que leur structure en solution

dans un solvant inerte correspond à un dimère. Le spectre³⁹ du composé de formule

$$C_4H_9$$
 C_7H_9 C_7H_2 C_1H_2 C_2H_2 C_2H_2 C_4H_9 C

est comparable à celui du dérivé germanié (XXXVIII), mais aucune bande particulière ne semble commune à ces deux cycles.

VII. COMPARAISON DES DÉRIVÉS OXYGÉNÉS DU SILICIUM, DU GERMANIUM ET DE L'ETAIN : INFLUENCE DE LA NATURE DU MÉTAL SUR LES FRÉQUENCES DE VIBRATION DES DIFFÉRENTS GROUPES

Comparaison des fréquences de vibration propres aux substituants alkyles

Pour réaliser cette comparaison nous utiliserons les résultats obtenus précédemment au Laboratoire, en série siliciée^{2,4,5} et en série stannique^{3,39,41}. Pour faciliter la discussion, nous avons rassemblé dans le Tableau 11 les fréquences des vibrations des groupes butyles d'une part, et méthyles d'autre part. Nous n'examinerons pas les vibrations de valence $v(CH_3)$ pour lesquelles une comparaison détaillée nécessiterait une étude précise des spectres Raman, qui n'était pas le but de ce travail.

Vibrations du groupe butyle lié à un atome métallique M (Si, Ge ou Sn). On remarque sur le Tableau 11 que les vibrations de déformations δ_a et δ_s (CH₃) absorbent à des fréquences identiques pour M=Si, Ge ou Sn; par contre, les bandes attribuées à δ'_s (CH₃) sont différentes, celles correspondant au germanium étant plus proches de celles de l'étain que de celles du silicium. Les deux vibrations de rocking des CH₃ ont des valeurs voisines pour les trois éléments.

TABLEAU II

FRÉQUENCES DES VIBRATIONS DE DÉFORMATION DES GROUPES MÉTHYLES ET BUTYLES LIÉS À UN ATOME MÉTALLI-QUE M (Si, Ge ou Sn) dans des dérivés isologues de type R_3MOR' ($R = CH_3$ ou $n-C_4H_9$)

Vibrations	Dérivés but	ylés		Dérivés méthylés					
	Si	Ge	Sn	Si	Ge	Sn			
δ.(CH3)	1465±1	1465 ± 1	1465+2	1410+2	1406+2	1397"			
$\delta_{1}(CH_{1})$	1458 ± 1	1445 ± 1	1446 ± 4	_	1406 + 2				
$\delta_{i}(CH_{3})$	1377 ± 2	1378 ± 2	1379 ± 3	1248 ± 4	1236 ± 2	1193ª			
δ(CH ₂) _c	_	1455 ± 1	1435 ± 3	_	_				
δ(CH ₂) _M	1407 ± 2	1414 ± 1	1414 ± 3						
$\rho(CH_3)$	1080 ± 2	1080 ± 3	1074 ± 4	842 ± 4	824 ± 3	766"			
$\rho(CH_{1})$	999 + 2	1000 + 1	1000 + 1		800 + 6				
$\rho(CH_{1})$	_	_	-	754 + 2	756 + 6	734"			
$\rho(CH, -C)$	762 ± 3	752 ± 4	745 ± 4						
$\rho(CH_2 - M)$	726 ± 3	690 ± 3	690±9						

^a Attributions proposées par Lorberth et Kula⁴².

En passant du silicium à l'étain, les fréquences des deux rockings $\rho(CH_2)_C$ et $\rho(CH_2)_M$ subissent des abaissements très importants : respectivement 17 et 38 cm⁻¹, qui indiquent une diminution de la constante de force de l'angle HCSn⁴⁴. Par contre, la fréquence des vibrations de déformation $\delta(CH_2)_M$ est très légèrement croissante :

ceci est cohérent avec la remarque précédente puisqu'en première approximation, la fréquence de ce mouvement dépend de la différence des constantes de force [F(HCH) - F(HCSn)].

Vibrations de groupe méthyle lié à un atome métallique M (Si, Ge ou Sn). On remarque, d'après les valeurs rassemblées dans le Tableau 11, que les fréquences des vibrations de déformation et de rocking subissent un abaissement plus marqué que dans le cas précédent suivant la nature de l'élément, celui-ci étant directement lié au groupe méthyle.

Comparaison des fréquences de vibration caractéristiques des dérivés organométalliques oxygénés

Dimétalloxanes

À partir des premières remarques concernant ce type de molécules⁴³ nous avons développé⁵⁶ l'étude des six composés symétriques de formule générale R_3MOMR_3 . Les résultats, rassemblés sur la Fig. 4 et le Tableau 12, permettent de tirer les conclusions suivantes:

Fig. 4. Positions relatives des fréquences v_a et v_s (MOM) des hexaalkyldimétalloxanes R₃MOMR₃.

(*i*). On note une décroissance des fréquences des vibrations $v_a(MOM)$ dans l'ordre Si > Ge > Sn, ce qui est en accord avec l'augmentation de masse de l'atome métallique. Toutefois, le germanium est nettement plus proche de l'étain que du silicium, ce qui s'explique si l'on considère les rapports des masses.

(ii). Par contre, les valeurs des v_s (MOM) ne se placent pas dans le même ordre :

|--|

 $(n-C_4H_9)_3$ SnOSn $(n-C_4H_9)_3$

requerces bes vibrations bu GROUTE most barry bes the Arter Tebratic Televanes									
Composés	v _a (MOM)	v _s (MOM)	v _m (MOM)	$(v_a - v_s)(MOM)$					
(CH ₃) ₃ SiOSi(CH ₃) ₃	1048	525	786	523					
(n-C ₄ H ₀) ₃ SiOSi(n-C ₄ H ₀) ₃	1068	543	805	525					
(CH ₃) ₃ GeOGe(CH ₃) ₃	794	467	630	327					
$(n-C_4H_9)_3$ GeOGe $(n-C_4H_9)_3$	841	400	620	441					
(CH ₃) ₃ SnOSn(CH ₃) ₃	737	411	574	326					

FRÉQUENCES DES VIBRATIONS DU GROUPE MOM DANS LES HEXAALKYLDIMÉTALLOXANES

784

 v_s (GeOGe) de l'hexaméthyldigermoxane est inférieure à celle de ses homòlogues stanniques.

417

On peut se demander si les bandes attribuées à $v_s(SnOSn)$ ne sont pas en réalité perturbées par les vibrations de déformation $\delta_s(SnOSn)$ attendues dans cette

367

600

région. Le calcul a en effet montré⁴⁴ que lorsque la masse de l'atome métallique d'un groupe MOM ou MOC augmente, les modes de vibration symétrique de valence et de déformation tendent à se coupler. Les calculs^{35,52} montrent, d'autre part, que le couplage des vibrateurs MOM est très sensible à l'angle MOM. Ces résultats confirment donc la diminution observée sur les valeurs de ces angles quand on examine successivement les éléments de la Colonne IVB.

Composés monoalcoxylés

Alors que les dérivés siliciés et stanniques étaient caractérisés par les vibrations de valence v_a et v_s (MOC), dans le cas des composés germaniés, nous avons vu que le couplage entre les deux vibrateurs isolés GeO et CO est très faible. L'examen du Tableau 13 dans lequel sont rassemblées les valeurs des fréquences v_a (MOC) et v(CO) des divers composés organométalliques synthétisés au Laboratoire, nous permet de faire les remarques suivantes:

(i). Le germanium ne se place plus entre le silicium et l'étain, ce qui est nettement visible d'après les valeurs des fréquences pour $R' = CH_3$ et C_2H_5 . Ceci confirme l'absence de couplage important entre GeO et CO.

(ii). Lorsqu'on remplace un radical méthyle par un radical butyle, on voit que les valeurs des fréquences restent inchangées pour un même métal.

(iii). Par contre, lorsque la taille du groupe alcoxyle varie, les fréquences oscillent entre 960 et 1100 cm⁻¹, ce qui prouve l'existence d'un rapport entre ces deux grandeurs. De nombreux auteurs ont cherché à établir une relation entre les variations de fréquence et d'intensité des vibrations caractéristiques d'un groupe fonctionnel et la nature de ses substituants. Ainsi, pour les composés organomé-talliques, il faut citer Smith⁴⁵. Thompson⁴⁶ et Kriegsmann⁴⁷ en série siliciée, et Mathis^{48,49} pour le germanium et l'étain.

Nous avons envisagé l'influence exercée par la masse et les effets électroniques

TABLEAU 13

COMPARAISON DES FRÉQUENCES DES VIBRATIONS DE VALENCE ANTISYMÉTRIQUE v_a (MOC) ou v (CO) des divers composés organométalliques synthétisés de type R_3MOR' (M=Si, Ge ou Sn)

R ₃ M	$R' = CH_3$	C_2H_5	n-C ₃ H ₇	$n-C_{g}H_{17}$	i-C3H7	t-C ₄ H ₉	C ₆ H ₁₁	C ₆ H₅
(CH ₃) ₃ Si	1090	1107		1097	1027	1021	1088	1260
(n-C₄H9)₃Si	1091	1077						
(CH ₃) ₃ Ge	1061	1064	1064	1070	980	972	1071	1256
(n-C₄H9)₃Ge	1060	1064	900	1074	980	971	1070	1252
(CH ₃) ₃ Sn (C ₄ H ₉) ₃ Sn	1075 1069	1100 1058	1070	1070	976	961	1070	1259

sur la fréquence de la vibration antisymétrique v_a (MOC) ou v (CO). Alors que l'effet de masse est peu important sur ces vibrations, les effets électroniques des substituants expliquent assez bien la variation de fréquence observée entre des groupes isopropyles ou tert-butyles. Le cas des dérivés phénylés est très particulier, car les bandes observées vers 1260 cm⁻¹, résultent d'un couplage entre deux vibrations comme nous l'avons vu précédemment. L'utilisation des constantes de Taft⁵⁰ est très délicate car les valeurs correspondant aux groupes alcoxylés sont mal connues.

Il ne paraît pas possible d'aller actuellement plus loin dans cette discussion et de comparer v(GeO) à $v_s(SiOC)$ ou $v_s(SnOC)$.

Composés dialcoxylés

Les difficultés rencontrés lors de l'attribution des vibrations v(CO) pour les dérivés germaniés et l'absence de résultats concernant les composés dialcoxylés homologues du silicium et de l'étain ne nous permettent pas de tirer de conclusions raisonnables à propos de ce type de dérivé.

Conclusion

Les divers résultats expérimentaux obtenus, ainsi que les informations recueillies lors de leur comparaison, n'apportent que peu de renseignement concernant l'existence d'une liaison $d_{\pi}-p_{\pi}$ entre le métal et l'oxygène dans les dérivés oxygénés du germanium. Nous avons, de ce fait, évalué la basicité relative des divers composés organométalliques oxygénés de la Colonne IVB. Nous avons ainsi obtenu un ordre de grandeur des propriétés acceptrices de l'oxygène, lié au métal. Les résultats, qui ont fait l'objet d'une publication⁵ par ailleurs, permettent de conclure à l'absence de liaison $d_{\pi}-p_{\pi}$ dans les composés oxygénés du germanium.

PARTIE EXPÉRIMENTALE

A. Synthèses

Après avoir effectué la synthèse des produits de base R_3 GeCl et R_2 GeCl₂ suivant les techniques habituelles, nous avons utilisé une méthode originale mise au point au Laboratoire⁵². Elle est basée sur une réaction d'échange SiCl-SnO que nous avons étendue au cas des dérivés germaniés: GeCl-SnO. La synthèse des dérivés méthylés (CH₃)₃GeOR oxygénés du germanium a donc été réalisée par transalcoxylation à partir des dérivés stanniques (C₄H₉)₃SnOR.

Du fait de leur point d'ébullition élevé, nous n'avons pas pu appliquer la méthode de transalcoxylation pour la préparation de tous les composés alcoxylés du type $(n-C_4H_9)_3$ GeOR, qu'il aurait été trop difficile de séparer des composés stanniques. Seuls, les deux premiers termes de cette série, pour $R = CH_3$ et C_2H_5 , ont été préparés à partir des méthoxytributylétains et éthoxytributylétains correspondants.

Les dérivés alcoxylés pour $R = i - C_3 H_7$, $n - C_8 H_{17}$, $C_6 H_{11}$ et $C_6 H_5$ ont été obtenus par la méthode décrite par Satge⁵³, qui consiste à faire réagir les alcools correspondants sur le tributylgermane.

Les diméthyldialcoxygermaniums $(CH_3)_2Ge(OR)_2$ ont été synthétisés par action du diméthyldichlorogermanium sur un alcool en présence d'ammoniac, comme l'a décrit Zueva²². Une méthode analogue décrite par Mehrotra⁵⁴ a permis de préparer les dibutyldialcoxygermaniums à partir des dibutyldichlorogermaniums.

L'hexaméthyldigermoxane (IV) a été obtenu par une réaction d'échange GeCl-SnOSn à l'aide de l'hexaméthyldistannoxane; cette méthode n'a pu être utilisée dans le cas de l'hexabutyldigermoxane (VII), les points d'ébullition des dérivés germaniés et stanniques étant trop voisins. L'hydrolyse du tributylchlorogermanium par une solution de soude donne de très bons rendements comme l'a signalé Anderson⁵⁵.

B. Caractéristiques physico-chimiques

Spectrographie infrarouge. Les spectres furent enregistrés à l'aide d'un spectrographe infrarouge Leitz double faisceau simple passage, équipé de prismes ou de réseaux. Les caractéristiques de l'appareil pour les diverses régions étudiées sont rassemblées dans le Tableau 14.

TABLEAU 14

CARACTÉRISTIQUES DE L'APPAREIL IR LEITZ

Région spectrale (en cm ⁻¹)	Prisme ou réseau	Largeur spectrale de fente (cm ⁻¹)	Erreur (cm ⁻¹)	Étalonnage
37002500	300 t/mM	1	1	H ₂ O et CH ₄
1800-1300	150 t/mM	1	1	H ₂ O
1300- 750	NaCl	2.5	1	NH ₃
750- 400	KBr	5	1	1,2,4-trichlorobenzène

Les composés sensibles à l'hydrolyse furent manipulés en caisson anhydre, sous atmosphère d'argon ou d'hélium. Selon, les régions spectrales, nous avons utilisé pour l'enregistrement des spectres des composés en solution dans les solvants organiques, des cellules d'épaisseur variable en NaCl et KBr. Les concentrations ont été de l'ordre de 0.1-1 M pour des épaisseurs de 0.05-1 mm.

En ce qui concerne les solvants, nous avons utilisé le tétrachlorure de carbone pour la région de 4000–850 cm⁻¹, le sulfure de carbone de 1300–400 cm⁻¹ et, lorsque les composés réagissaient avec le sulfure de carbone, le cyclohexane et l'hexane de 850-400 cm⁻¹, et enfin le chloroforme ou le bromoforme comme donneur de protons.

Sur chaque spectre ont été enregistrés les spectres de référence (vapeur d'eau, méthane, ammoniac et 1,2,4-trichlorobenzène) par rapport auxquels nous avons repéré la position des bandes d'absorption des produits étudiés.

Spectrographie Raman. Les spectres de diffusion de quelques composés à l'état pur furent enregistrés sur un spectrographe Raman Coderg type CH-1 à source laser He-Ne (raie excitatrice à 6328 Å) de puissance 150 mW. En général, la fente utilisée a une largeur spectrale de 4 à 8 cm⁻¹.

Chromatographie en phase gazeuse. Nous avons vérifié la pureté des dérivés préparés à l'aide de cette technique, chaque fois que leurs constantes physiques et la stabilité des produits le permettaient. L'appareil utilisé était le Hewlett-Packard FM 5750 équipé d'une colonne Silicone Rubber 5%.

REMERCIEMENTS

Nous tenons à remercier le Professeur Lascombe pour la mise à notre disposition d'un certain nombre de ses appareils. Nous remercions également le Professeur Pineau et le Docteur Pham Van Huong pour leurs conseils, et le Germanium Research Committee pour la fourniture des composés germaniés de base nécessaires à cette recherche.

BIBLIOGRAPHIE

- 1 A. MARCHAND, J. VALADE, M.-T. FOREL, M.-L. JOSIEN ET R. CALAS, J. Chim. Phys. Physicochim. Biol., 59 (1962) 1142.
- 2 A. MARCHAND, M.-T. FOREL, F. METRAS ET J. VALADE, J. Chim. Phys. Physicochim. Biol., 61 (1964) 343.
- 3 J. MENDELSOHN, A. MARCHAND ET J. VALADE, J. Organometal. Chem., 6 (1966) 25.
- 4 R. CALAS, A. MARCHAND, E. FRAINNET ET P. GERVAL, Bull. Soc. Chim. Fr., 6 (1968) 2478.
- 5 A. MARCHAND ET J. VALADE, J. Organometal. Chem., 12 (1968) 305
- 6 M. LEBEDEFF, A. MARCHAND ET J. VALADE, C. R. Acad. Sci., Paris, Sér. C, 267 (1968) 813.
- 7 D. F. VAN DE VONDEL ET G. P. VAN DER KELEN, Bull. Soc. Chim. Belg., 74 (1965) 453.
- 8 M. P. BROWN, E. CARTMELL ET G. W. A. FOWLES, J. Chem. Soc., (1960) 506.
- 9 S. V. MARKOVA ET G. Y. ZUEVA, Opt. Spectrosc., 19 (1965) 399.
- 10 N. A. CHUMAEVSKI, Usp. Khim., 22 (1963) 1152.
- 11 L. A. LEITES, Y. P. EGOROV, G. Y. ZUEVA ET V. A. PONOMARENKO. Izv. Akad. Nauk. SSSR, Otd. Khim. Nauk., (1961) 2132.
- 12 N. A. CHUMAEVSKI, Opt. Spectrosc., 13 (1962) 37.
- 13 J. E. GRIFFITHS, Spectrochim. Acta, 20 (1964) 1335.
- 14 J. R. ARONSON ET J. R. DURIG. Spectrochim. Acta, 20 (1964) 219.
- 15 R. J. CROSS ET F. GLOCKLING, J. Organometal. Chem., 3 (1965) 146.
- 16 S. MATHUR, R. OUAKI, V. K. MATHUR, R. C. MEHROTRA ET J. C. MAIRE, Indian J. Chem., 7 (1969) 284.
- 17 R. G. SNYDER ET J. H. SCHACHTSCHNEIDER, Spectrochim. Acta, 21 (1965) 169.
- 18 J. C. LAVALLEY, Thèse Doctorat d'État, Caen (1969).
- 19 K. M. MACKAY ET R. WATT, J. Organometal. Chem., 6 (1966) 336.
- 20 K. ULBRICHT ET V. CHVALOVSKY.- J. Organometal. Chem., 12 (1968) 105.
- 21 N. SHEPPARD, J. Chem. Phys., 16 (1948) 690.
- 22 G. Y. ZUEVA, I. F. MANUCHAROVA, I. P. YAKOLEV ET V. A. PONOMARENKO, *Izv. Akad. Nauk. SSSR*, *Neorgan. Mater.*, 2 (1966) 229.
- 23 B. JEZOWSKA-TRZEBIATOWSKA, J. HANUZA ET W. WOJCIECHOWSKI, Spectrochim. Acta, Part A, 23 (1967) 2361.
- 24 S. CRADOCK, J. Chem. Soc., (1968) 1426.
- 25 R. LIPPINCOTT ET M. C. TOBIN, J. Amer. Chem. Soc., 75 (1953) 4141.
- 26 M. P. BROWN, R. OKAWARA ET E. ROCHOW, Spectrochim. Acta, 16 (1960) 595.
- 27 R. LIPPINCOTT, P. MERCIER ET M. C. TOBIN, J. Phys. Chem., 57 (1953) 939.
- 28 C. W. YOUNG, J.-S. KOEHLER ET D. S. MCKINNEY, J. Amer. Chem. Soc., 69 (1947) 1410.
- 29 W. F. EDGELL ET C. H. WARD, J. Amer. Chem. Soc., 77 (1955) 6486.
- 30 D. N. WATERS ET L. A. WOODWARD, Proc. Roy. Soc., Ser. A, 246 (1956) 119.
- 31 E. B. WILSON JR., J.-C. DECIUS ET P.-C. CROSS, *Molecular vibrations*, MacGraw Hill, New York, 1955.
- 32 M.-T. FOREL, C. GARRIGOU-LAGRANGE, J. GEMIN ET M.-L. JOSIEN, J. Chim. Phys. Physicochim. Biol., 60 (1963) 1047.
- 33 G. FOURCHE, J. Chim. Phys. Physicochim. Biol., 65 (1968) 1500.
- 34 T. D. GOLDFARB ET SEI SUJISHI, J. Amer. Chem. Soc., 86 (1964) 1679.
- 35 C. GLIDEWELL, D. W. H. RANKIN, A. G. ROBIETTE, G. M. SHELDRICK, S. CRADOCK, E. A. V. EBSWORTH ET B. BEAGLEY, *Inorg. Nucl. Chem. Lett.*, 5 (1969) 417.
- 36 L. O. BROCKWAY ET H. O. JENKINS, J. Amer. Chem. Soc., 58 (1936) 2036.
- 37 M.-T. FOREL, C. DESTRADE ET C. GARRIGOU-LAGRANGE, J. Chim. Phys. Physicochim. Biol., 66 (1969) 1991.
- 38 J. MENDELSOHN, J.-C. POMMIER ET J. VALADE, C.R. Acad. Sci., 263 (1966) 921.
- 39 J. MENDELSOHN, Thèse Docteur-Ingénieur, Bordeaux (1967).
- 40 S. MATHUR ET R. C. MEHROTRA, J. Organometal. Chem., 4 (1965) 145.
- 41 J. MENDELSOHN, A. MARCHAND ET J. VALADE, C.R. Acad. Sci., 261 (1965) 135.
- 42 J. LORBERTH ET M. R. KULA. Chem. Ber., 97 (1964) 3444.
- 43 A. MARCHAND, J. MENDELSOHN, M. LEBEDEFF ET J. VALADE. 2ème Symposium International sur la Chimie des Composés Organiques du Silicium. Bordeaux, 1968 p. 125.
- 44 M. FOUASSIER. Thèse Docteur-Ingénieur, Bordeaux (1968).
- 45 A. L. SMITH ET N. C. ANGELOTTI, Spectrochim. Acta, 14 (1959) 412.
- 46 H. W. THOMPSON, Spectrochim. Acta, 16 (1960) 238.

- 47 H. KRIEGSMANN, G. KESSLER ET P. REICH, Z. Chem., 1 (1961) 346.
- 48 R. MATHIS, J. SATGE ET F. MATHIS, Spectrochim. Acta, 18 (1962) 1463.
- 49 R. MATHIS, M. CONSTANT, J. SATGE ET F. MATHIS, Spectrochim. Acta, 20 (1964) 515.
- 50 R. W. TAFT JR., Steric Effects in Organic Chemistry, New York, 1956, p. 556.
- 51 A. MARCHAND, J. MENDELSOHN, M. LEBEDEFF ET J. VALADE, J. Organometal. Chem., 17 (1969) 379.
- 52 J. C. POMMIER, M. PEREYRE ET J. VALADE, C. R. Acad. Sci., 260 (1965) 6397.
- 53 J. SATGE, Bull. Soc. Chim. Fr., 3 (1964) 630.
- 54 S. MATHUR, G. CHANDRA, A. K. RAI ET R. C. MEHROTRA, J. Organometal. Chem., 4 (1965) 294.
- 55 H. H. ANDERSON, J. Amer. Chem. Soc., 73 (1951) 5800.
- 56 M. LEBEDEFF, Thèse Docteur-Ingénieur, Bordeaux (1969).